Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6690): 1448-1454, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547266

RESUMO

The defensive alkaloid gramine not only protects barley and other grasses from insects but also negatively affects their palatability to ruminants. The key gene for gramine formation has remained elusive, hampering breeding initiatives. In this work, we report that a gene encoding cytochrome P450 monooxygenase CYP76M57, which we name AMI synthase (AMIS), enables the production of gramine in Nicotiana benthamiana, Arabidopsis thaliana, and Saccharomyces cerevisiae. We reconstituted gramine production in the gramine-free barley (Hordeum vulgare) variety Golden Promise and eliminated it from cultivar Tafeno by Cas-mediated gene editing. In vitro experiments unraveled that an unexpected cryptic oxidative rearrangement underlies this noncanonical conversion of an amino acid to a chain-shortened biogenic amine. The discovery of the genetic basis of gramine formation now permits tailor-made optimization of gramine-linked traits in barley by plant breeding.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hordeum , Alcaloides Indólicos , Família Multigênica , Hordeum/genética , Hordeum/metabolismo , Alcaloides Indólicos/metabolismo , Melhoramento Vegetal , Oxirredução , Triptofano/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Edição de Genes , Genes de Plantas
2.
Plants (Basel) ; 12(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653847

RESUMO

Barley (Hordeum vulgare) is one of the most widely cultivated crops for feedstock and beer production, whereas lupins (Lupinus spp.) are grown as fodder and their seeds are a source of protein. Both species produce the allelopathic alkaloids gramine and hordenine. These plant-specialized metabolites may be of economic interest for crop protection, depending on their tissue distribution. However, in high concentrations they pose a health risk to humans and animals that feed on them. This study was carried out to develop and validate a new method for monitoring these alkaloids and their related metabolites using fluorescence detection. Separation was performed on an HSS T3 column using slightly acidified water-acetonitrile eluents. Calibration plots expressed linearity over the range 0.09-100 pmol/µL for gramine. The accuracy and precision ranged from 97.8 to 123.4%, <7% RSD. The method was successfully applied in a study of the natural range of abundance of gramine, hordenine and their related metabolites, AMI, tryptophan and tyramine, in 22 barley accessions and 10 lupin species. This method provides accurate and highly sensitive chromatographic separation and detection of tryptophan- and tyrosine-derived allelochemicals and is an accessible alternative to LC-MS techniques for routine screening.

3.
Nat Plants ; 9(5): 687-688, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37127749
4.
Proc Natl Acad Sci U S A ; 120(17): e2302448120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068250

RESUMO

The tropane alkaloids (TAs) cocaine and hyoscyamine have been used medicinally for thousands of years. To understand the evolutionary origins and trajectories of serial biosynthetic enzymes of TAs and especially the characteristic tropane skeletons, we generated the chromosome-level genome assemblies of cocaine-producing Erythroxylum novogranatense (Erythroxylaceae, rosids clade) and hyoscyamine-producing Anisodus acutangulus (Solanaceae, asterids clade). Comparative genomic and phylogenetic analysis suggested that the lack of spermidine synthase/N-methyltransferase (EnSPMT1) in ancestral asterids species contributed to the divergence of polyamine (spermidine or putrescine) methylation in cocaine and hyoscyamine biosynthesis. Molecular docking analysis and key site mutation experiments suggested that ecgonone synthases CYP81AN15 and CYP82M3 adopt different active-site architectures to biosynthesize the same product ecgonone from the same substrate in Erythroxylaceae and Solanaceae. Further synteny analysis showed different evolutionary origins and trajectories of CYP81AN15 and CYP82M3, particularly the emergence of CYP81AN15 through the neofunctionalization of ancient tandem duplication genes. The combination of structural biology and comparative genomic analysis revealed that ecgonone methyltransferase, which is responsible for the biosynthesis of characteristic 2-substituted carboxymethyl group in cocaine, evolved from the tandem copies of salicylic acid methyltransferase by the mutations of critical E216 and S153 residues. Overall, we provided strong evidence for the independent origins of serial TA biosynthetic enzymes on the genomic and structural level, underlying the chemotypic convergence of TAs in phylogenetically distant species.


Assuntos
Cocaína , Hiosciamina , Solanaceae , Filogenia , Simulação de Acoplamento Molecular , Tropanos , Solanaceae/genética , Genômica , Metiltransferases/genética
5.
Plants (Basel) ; 12(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36840259

RESUMO

Fusarium head blight (FHB) is one of the most dangerous diseases of winter wheat, resulting in reduced grain yield and quality, and production of mycotoxins by the Fusarium fungi. In the present study, changes in the grain metabolomics of winter wheat samples infected with Fusarium spp. and corresponding non-infected samples from two locations in Croatia were investigated by GC-MS. A Mann-Whitney test revealed that 24 metabolites detected were significantly separated between Fusarium-inoculated and non-infected samples during the variety by treatment interactions. The results confirmed that in grains of six FHB-resistant varieties, ten metabolites were identified as possible resistance-related metabolites. These metabolites included heptadecanoic acid, 9-(Z)-hexadecenoic acid, sophorose, and secolaganin in grains of FHB-resistant varieties at the Osijek location, as well as 2-methylaminomethyltartronic acid, maleamic acid, 4-hydroxyphenylacetonitrile, 1,4-lactonearabinonic acid, secolaganin, and alanine in grains of FHB-resistant varieties at the Tovarnik location. Moreover, on the PCA bi-plot, FHB-susceptible wheat varieties were closer to glycyl proline, decanoic acid, and lactic acid dimer that could have affected other metabolites, and thus, suppressed resistance to FHB. Although defense reactions were genetically conditioned and variety specific, resulting metabolomics changes may give insight into defense-related pathways that could be manipulated to engineer plants with improved resistance to the pathogen.

6.
Annu Rev Plant Biol ; 74: 165-194, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36450296

RESUMO

Plants' ability to chemically modify core structures of specialized metabolites is the main reason why the plant kingdom contains such a wide and rich array of diverse compounds. One of the most important types of chemical modifications of small molecules is the addition of an acyl moiety to produce esters and amides. Large-scale phylogenomics analyses have shown that the enzymes that perform acyl transfer reactions on the myriad small molecules synthesized by plants belong to only a few gene families. This review is focused on describing the biochemistry, evolutionary origins, and chemical ecology implications of one of these families-the BAHD acyltransferases. The growth of advanced metabolomic studies coupled with next-generation sequencing of diverse plant species has confirmed that the BAHD family plays critical roles in modifying nearly all known classes of specialized metabolites. The current and future outlook for research on BAHDs includes expanding their roles in synthetic biology and metabolic engineering.


Assuntos
Aciltransferases , Plantas , Aciltransferases/genética , Aciltransferases/química , Aciltransferases/metabolismo , Plantas/metabolismo , Evolução Biológica , Filogenia
7.
Curr Opin Biotechnol ; 79: 102857, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502769

RESUMO

Although it is still in its infancy, synthetic biology has the capacity to face scientific and societal problems related to modern agriculture. Innovations in cloning toolkits and genetic parts allow increased precision over gene expression in planta. We review the vast spectrum of available technologies providing a practical list of toolkits that take advantage of combinatorial power to introduce/alter metabolic pathways. We highlight that rational design is inspired by deep knowledge of natural and biochemical mechanisms. Finally, we provide several examples in which modern technologies have been applied to address these critical topics. Future applications in plants include not only pathway modifications but also prospects of augmenting plant anatomical features and developmental processes.


Assuntos
Plantas , Biologia Sintética , Plantas/genética , Plantas/metabolismo , Redes e Vias Metabólicas , Agricultura
8.
Proc Natl Acad Sci U S A ; 119(49): e2215372119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442128

RESUMO

Tropane alkaloids (TAs) are heterocyclic nitrogenous metabolites found across seven orders of angiosperms, including Malpighiales (Erythroxylaceae) and Solanales (Solanaceae). Despite the well-established euphorigenic properties of Erythroxylaceae TAs like cocaine, their biosynthetic pathway remains incomplete. Using yeast as a screening platform, we identified and characterized the missing steps of TA biosynthesis in Erythroxylum coca. We first characterize putative E. coca polyamine synthase- and amine oxidase-like enzymes in vitro, in yeast, and in planta to show that the first tropane ring closure in Erythroxylaceae occurs via bifunctional spermidine synthase/N-methyltransferases and both flavin- and copper-dependent amine oxidases. We next identify a SABATH family methyltransferase responsible for the 2-carbomethoxy moiety characteristic of Erythroxylaceae TAs and demonstrate that its coexpression with methylecgonone reductase in yeast engineered to express the Solanaceae TA pathway enables the production of a hybrid TA with structural features of both lineages. Finally, we use clustering analysis of Erythroxylum transcriptome datasets to discover a cytochrome P450 of the CYP81A family responsible for the second tropane ring closure in Erythroxylaceae, and demonstrate the function of the core coca TA pathway in vivo via reconstruction and de novo biosynthesis of methylecgonine in yeast. Collectively, our results provide strong evidence that TA biosynthesis in Erythroxylaceae and Solanaceae is polyphyletic and that independent recruitment of unique biosynthetic mechanisms and enzyme classes occurred at nearly every step in the evolution of this pathway.


Assuntos
Amina Oxidase (contendo Cobre) , Coca , Cocaína , Solanaceae , Saccharomyces cerevisiae , Tropanos , Solanaceae/genética , Aminas
9.
Front Plant Sci ; 13: 934651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212324

RESUMO

Tea is a steeped beverage made from the leaves of Camellia sinensis. Globally, this healthy, caffeine-containing drink is one of the most widely consumed beverages. At least 50 countries produce tea and most of the production information and tea research is derived from international sources. Here, we discuss information related to tea production, genetics, and chemistry as well as production issues that affect or are likely to affect emerging tea production and research in the United States. With this review, we relay current knowledge on tea production, threats to tea production, and solutions to production problems to inform this emerging market in the United States.

10.
BMC Plant Biol ; 22(1): 430, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36076171

RESUMO

BACKGROUND: Sugar beet is an important crop for sugar production. Sugar beet roots are stored up to several weeks post-harvest waiting for processing in the sugar factories. During this time, sucrose loss and invert sugar accumulation decreases the final yield and processing quality. To improve storability, more information about post-harvest metabolism is required. We investigated primary and secondary metabolites of six sugar beet varieties during storage. Based on their variety-specific sucrose loss, three storage classes representing well, moderate, and bad storability were compared. Furthermore, metabolic data were visualized together with transcriptome data to identify potential mechanisms involved in the storage process. RESULTS: We found that sugar beet varieties that performed well during storage have higher pools of 15 free amino acids which were already observable at harvest. This storage class-specific feature is visible at harvest as well as after 13 weeks of storage. The profile of most of the detected organic acids and semi-polar metabolites changed during storage. Only pyroglutamic acid and two semi-polar metabolites, including ferulic acid, show higher levels in well storable varieties before and/or after 13 weeks of storage. The combinatorial OMICs approach revealed that well storable varieties had increased downregulation of genes involved in amino acid degradation before and after 13 weeks of storage. Furthermore, we found that most of the differentially genes involved in protein degradation were downregulated in well storable varieties at both timepoints, before and after 13 weeks of storage. CONCLUSIONS: Our results indicate that increased levels of 15 free amino acids, pyroglutamic acid and two semi-polar compounds, including ferulic acid, were associated with a better storability of sugar beet taproots. Predictive metabolic patterns were already apparent at harvest. With respect to elongated storage, we highlighted the role of free amino acids in the taproot. Using complementary transcriptomic data, we could identify potential underlying mechanisms of sugar beet storability. These include the downregulation of genes for amino acid degradation and metabolism as well as a suppressed proteolysis in the well storable varieties.


Assuntos
Beta vulgaris , Beta vulgaris/genética , Beta vulgaris/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo
11.
Plant Cell ; 34(7): 2785-2805, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35512341

RESUMO

As the gall-inducing smut fungus Ustilago maydis colonizes maize (Zea mays) plants, it secretes a complex effector blend that suppresses host defense responses, including production of reactive oxygen species (ROS) and redirects host metabolism to facilitate colonization. We show that the U. maydis effector ROS burst interfering protein 1 (Rip1), which is involved in pathogen-associated molecular pattern (PAMP)-triggered suppression of host immunity, is functionally conserved in several other monocot-infecting smut fungi. We also have identified a conserved C-terminal motif essential for Rip1-mediated PAMP-triggered suppression of the ROS burst. The maize susceptibility factor lipoxygenase 3 (Zmlox3) bound by Rip1 was relocalized to the nucleus, leading to partial suppression of the ROS burst. Relocalization was independent of its enzymatic activity, revealing a distinct function for ZmLox3. Most importantly, whereas Zmlox3 maize mutant plants showed increased resistance to U. maydis wild-type strains, rip1 deletion strains infecting the Zmlox3 mutant overcame this effect. This could indicate that Rip1-triggered host resistance depends on ZmLox3 to be suppressed and that lox3 mutation-based resistance of maize to U. maydis requires functional Rip1. Together, our results reveal that Rip1 acts in several cellular compartments to suppress immunity and that targeting of ZmLox3 by Rip1 is responsible for the suppression of Rip1-dependent reduced susceptibility of maize to U. maydis.


Assuntos
Ustilago , Zea mays , Basidiomycota , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Ustilago/genética
12.
Trends Plant Sci ; 27(6): 549-563, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35248492

RESUMO

High-throughput (HTP) plant phenotyping approaches are developing rapidly and are already helping to bridge the genotype-phenotype gap. However, technologies should be developed beyond current physico-spectral evaluations to extend our analytical capacities to the subcellular level. Metabolites define and determine many key physiological and agronomic features in plants and an ability to integrate a metabolomics approach within current HTP phenotyping platforms has huge potential for added value. While key challenges remain on several fronts, novel technological innovations are upcoming yet under-exploited in a phenotyping context. In this review, we present an overview of the state of the art and how current limitations might be overcome to enable full integration of metabolomics approaches into a generic phenotyping pipeline in the near future.


Assuntos
Genômica , Plantas , Metabolômica , Fenótipo , Melhoramento Vegetal , Plantas/genética
13.
Nat Methods ; 18(7): 747-756, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239102

RESUMO

Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas/normas , Metabolômica/normas , Distribuição Aleatória , Manejo de Espécimes , Fluxo de Trabalho
14.
aBIOTECH ; 2(3): 240-263, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36303885

RESUMO

The evolution of new traits in living organisms occurs via the processes of mutation, recombination, genetic drift, and selection. These processes that have resulted in the immense biological diversity on our planet are also being employed in metabolic engineering to optimize enzymes and pathways, create new-to-nature reactions, and synthesize complex natural products in heterologous systems. In this review, we discuss two evolution-aided strategies for metabolic engineering-directed evolution, which improves upon existing genetic templates using the evolutionary process, and combinatorial pathway reconstruction, which brings together genes evolved in different organisms into a single heterologous host. We discuss the general principles of these strategies, describe the technologies involved and the molecular traits they influence, provide examples of their use, and discuss the roadblocks that need to be addressed for their wider adoption. A better understanding of these strategies can provide an impetus to research on gene function discovery and biochemical evolution, which is foundational for improved metabolic engineering. These evolution-aided approaches thus have a substantial potential for improving our understanding of plant metabolism in general, for enhancing the production of plant metabolites, and in sustainable agriculture.

15.
Genes (Basel) ; 11(10)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081197

RESUMO

Hypericum perforatum L. commonly known as Saint John's Wort (SJW), is an important medicinal plant that has been used for more than 2000 years. Although H. perforatum produces several bioactive compounds, its importance is mainly linked to two molecules highly relevant for the pharmaceutical industry: the prenylated phloroglucinol hyperforin and the naphtodianthrone hypericin. The first functions as a natural antidepressant while the second is regarded as a powerful anticancer drug and as a useful compound for the treatment of Alzheimer's disease. While the antidepressant activity of SJW extracts motivate a multi-billion dollar industry around the world, the scientific interest centers around the biosynthetic pathways of hyperforin and hypericin and their medical applications. Here, we focus on what is known about these processes and evaluate the possibilities of combining state of the art omics, genome editing, and synthetic biology to unlock applications that would be of great value for the pharmaceutical and medical industries.


Assuntos
Hypericum/química , Hypericum/genética , Compostos Fitoquímicos/biossíntese , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Proteínas de Plantas/genética , Antracenos , Antidepressivos/farmacologia , Antineoplásicos/farmacologia , Europa (Continente) , Humanos , Hypericum/crescimento & desenvolvimento , Hypericum/metabolismo , Perileno/análogos & derivados , Perileno/farmacologia , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Terpenos/farmacologia
16.
Molecules ; 24(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640255

RESUMO

The genus Erythroxylum contains species used by indigenous people of South America long before the domestication of plants. Two species, E. coca and E. novogranatense, have been utilized for thousands of years specifically for their tropane alkaloid content. While abuse of the narcotic cocaine has impacted society on many levels, these species and their wild relatives contain untapped resources for the benefit of mankind in the form of foods, pharmaceuticals, phytotherapeutic products, and other high-value plant-derived metabolites. In this review, we describe the current state of knowledge of members within the genus and the recent advances in the realm of molecular biology and biochemistry.


Assuntos
Erythroxylaceae/química , Extratos Vegetais/química , Animais , Erythroxylaceae/classificação , Humanos , Filogenia , Extratos Vegetais/farmacologia , América do Sul
17.
Nat Commun ; 9(1): 5281, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538251

RESUMO

Tropinone is the first intermediate in the biosynthesis of the pharmacologically important tropane alkaloids that possesses the 8-azabicyclo[3.2.1]octane core bicyclic structure that defines this alkaloid class. Chemical synthesis of tropinone was achieved in 1901 but the mechanism of tropinone biosynthesis has remained elusive. In this study, we identify a root-expressed type III polyketide synthase from Atropa belladonna (AbPYKS) that catalyzes the formation of 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This catalysis proceeds through a non-canonical mechanism that directly utilizes an unconjugated N-methyl-Δ1-pyrrolinium cation as the starter substrate for two rounds of malonyl-Coenzyme A mediated decarboxylative condensation. Subsequent formation of tropinone from 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid is achieved through cytochrome P450-mediated catalysis by AbCYP82M3. Silencing of AbPYKS and AbCYP82M3 reduces tropane levels in A. belladonna. This study reveals the mechanism of tropinone biosynthesis, explains the in planta co-occurrence of pyrrolidines and tropanes, and demonstrates the feasibility of tropane engineering in a non-tropane producing plant.


Assuntos
Atropa belladonna/enzimologia , Atropa belladonna/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/metabolismo , Policetídeo Sintases/metabolismo , Tropanos/química , Tropanos/metabolismo , Atropa belladonna/genética , Ciclização , Sistema Enzimático do Citocromo P-450/genética , Estrutura Molecular , Proteínas de Plantas/genética , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Policetídeo Sintases/genética
18.
Molecules ; 23(5)2018 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-29783733

RESUMO

Alkaloids compose a large class of natural products, and mono-methylated polyamines are a common intermediate in their biosynthesis. In order to evaluate the role of selectively methylated natural products, synthetic strategies are needed to prepare them. Here, N-methylcadaverine is prepared in 37.3% yield in three steps. The alternative literature two-step strategy resulted in reductive deamination to give N-methylpiperidine as determined by the single crystal structure. A straightforward strategy to obtain the mono-alkylated aliphatic diamine, cadaverine, which avoids potential side-reactions, is demonstrated.


Assuntos
Poliaminas Biogênicas/síntese química , Cadaverina/química , Piperidinas/síntese química , Poliaminas Biogênicas/química , Cristalografia por Raios X , Ciclização , Metilação , Modelos Moleculares , Estrutura Molecular , Piperidinas/química
19.
Molecules ; 21(11)2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27845728

RESUMO

The tropane and granatane alkaloids belong to the larger pyrroline and piperidine classes of plant alkaloids, respectively. Their core structures share common moieties and their scattered distribution among angiosperms suggest that their biosynthesis may share common ancestry in some orders, while they may be independently derived in others. Tropane and granatane alkaloid diversity arises from the myriad modifications occurring to their core ring structures. Throughout much of human history, humans have cultivated tropane- and granatane-producing plants for their medicinal properties. This manuscript will discuss the diversity of their biological and ecological roles as well as what is known about the structural genes and enzymes responsible for their biosynthesis. In addition, modern approaches to producing some pharmaceutically important tropanes via metabolic engineering endeavors are discussed.


Assuntos
Alcaloides/biossíntese , Tropanos/metabolismo , Alcaloides/química , Vias Biossintéticas , Engenharia Metabólica , Extratos Vegetais/química , Metabolismo Secundário , Tropanos/química
20.
Plant Physiol ; 167(1): 89-101, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25406120

RESUMO

The esterification of methylecgonine (2-carbomethoxy-3ß-tropine) with benzoic acid is the final step in the biosynthetic pathway leading to the production of cocaine in Erythoxylum coca. Here we report the identification of a member of the BAHD family of plant acyltransferases as cocaine synthase. The enzyme is capable of producing both cocaine and cinnamoylcocaine via the activated benzoyl- or cinnamoyl-Coenzyme A thioesters, respectively. Cocaine synthase activity is highest in young developing leaves, especially in the palisade parenchyma and spongy mesophyll. These data correlate well with the tissue distribution pattern of cocaine as visualized with antibodies. Matrix-assisted laser-desorption ionization mass spectral imaging revealed that cocaine and cinnamoylcocaine are differently distributed on the upper versus lower leaf surfaces. Our findings provide further evidence that tropane alkaloid biosynthesis in the Erythroxylaceae occurs in the above-ground portions of the plant in contrast with the Solanaceae, in which tropane alkaloid biosynthesis occurs in the roots.


Assuntos
Aciltransferases/metabolismo , Cocaína/biossíntese , Proteínas de Plantas/metabolismo , Catálise , Cocaína/análogos & derivados , Cocaína/análise , Erythroxylaceae/enzimologia , Erythroxylaceae/metabolismo , Células do Mesofilo/enzimologia , Células do Mesofilo/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...